Порошки агломератов вентильных металлов и оксидов вентильных металлов и способ их получения

Номер патента: 28055

Опубликовано: 25.12.2013

Авторы: БРУММ, Хольгер, Шниттер, Кристоф

Есть еще 2 страницы.

Смотреть все страницы или скачать PDF файл.

Текст

Смотреть все

(51) 01 9/052 (2006.01) 22 1/00 (2006.01) 22 34/24 (2006.01) КОМИТЕТ ПО ПРАВАМ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ МИНИСТЕРСТВА ЮСТИЦИИ РЕСПУБЛИКИ КАЗАХСТАН/2009/060912, 25.08.2009 Шниттер, КристофБрумм, ХольгерХ.К. Штарк ГмбХЮрчак Лариса Сергеевна 19855998 1, 19.08.19991505611 2, 09.02.2005103 07 716 1, 25.09.2003(54) ПОРОШКИ АГЛОМЕРАТОВ ВЕНТИЛЬНЫХ МЕТАЛЛОВ И ОКСИДОВ ВЕНТИЛЬНЫХ МЕТАЛЛОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ(57) Данное изобретение относится к получению порошков агломератов вентильных металлов и оксидов вентильных металлов, пригодных для изготовления конденсаторов с твердым электролитом,которые после спекания в высокопористые спеченные тела показывают высокую скелетную плотность, то есть бедны содержанием закрытых пор. Порошки агломератов имеют высокую компактность и очень хороший зависящий от удельной поверхности коэффициент скольжения. Данное изобретение относится к порошкам агломератов вентильных металлов и оксидов вентильных металлов (к вентильным металлам относятся , Та, , , , , , , ) и их смесей и сплавов, в частности, ниобия и/или тантала или недоксида ниобия,для изготовления конденсаторов, а также, к спеченным телам анодов для конденсаторов. В качестве конденсаторов с твердыми электролитами с очень большой активной поверхностью катализатора и в связи с этим с очень небольшой конструкцией, приспособленной для электроники мобильной связи, предпочтительно используют такие, у которых на соответствующий проводящий носитель нанесен запирающий слой из пентоксида ниобия, соответственно, титана, с использованием их стабильности (вентильный металл), которые отличаются сравнительно высокими диэлектрическими константами и очень равномерным слоем изолирующего пентоксидного слоя, получаемого электрохимически. В качестве носителей применяют металлические или проводящие низкооксидные(недоксиды) предшественники соответствующих пентоксидов. Носитель,который одновременно является электродом конденсатора(анод),имеет высокопористую,губкообразную структуру,которую получают спеканием мелкочастичных первичных структур,соответственно,уже губкообразных вторичных структур. Поверхность несущей структуры окисляют электролитически в пентоксид(формуют),причем,толщина пентоксидного слоя задается максимальным напряжением электролитического окисления(формующее напряжение). Противоэлектрод создают пропитыванием губкообразной структуры нитратом марганца,который термически превращают в диоксид марганца,или жидким предшественником полимерного электролита или полимерной дисперсией проводящего полимера и полимеризацией,например,полиэтилендиокситиофен. Электрические контакты к электродам на одной стороне осуществляются танталовым или ниобиевым проводом, спекаемым с несущей структурой при ее создании, и на другой стороне изолированной по отношению к проводу металлической оболочкой конденсатора. Емкость конденсатора рассчитывают по следующей формуле С / ,где означает площадь поверхности конденсатора, означает диэлектрическую константу,означает толщину изолирующего слоя на 1 Вольт формующего напряжения ивеличину формующего напряжения. Спекание мелкочастичных первичных и/или вторичных структур позволяет создать очень большую активную поверхность конденсатора,однако возникают и замкнутые поры, поверхность которых не является активной. Замкнутые поры уменьшают в связи с этим связанную с объемом емкость конденсаторов, изготавливаемых из 2 порошков. В случае использования вторичных структур без замкнутых пор можно в связи с более высокой,связанной с объемом емкостью конденсатора,использовать более высокие температуры спекания при изготовлении тел анодов без потери емкости конденсатора, что по сравнению с использованием обычных порошков опять же приводит к усилению перешейков спекания и к лучшему связыванию провода. Лучшее связывание провода и более прочные перешейки спекания,способствуют более стабильному телу анода конденсатора, и лучшие характеристики по току утечки,эквивалентному последовательному сопротивлению и ударному току конденсатора. В связи с этим желательно, чтобы число и объем замкнутых пор в конденсаторе поддерживалось по возможности малым. Мерой открытости пор анода конденсатора и применяемых для изготовления конденсаторов вторичных порошков(агломерированных порошков) является их скелетная плотность,которая определяется как отношение массы спекшегося тела к сумме объемов доли твердых частиц и объемов замкнутых пор. Измерение скелетной плотности анодных структур проводят с помощью ртутной проникающей порометрии, также называемой ртутной порометрией. В результате использования обычных способов спекания для получения анодов конденсаторов достигаются скелетные плотности, составляющие от 80 до 88 теоретической плотности твердого материала. Известны способы воздействия на структуру пор анодов конденсаторов из ниобия или тантала с целью получения широкого или бимодального распределения пор по размерам, при которых во время спекания вводят так называемые порообразователи. При этом, с одной стороны, (ЕР 1291100 ,2006/057455) вводят в качестве порообразователей органические соединения,которые разлагаются или испаряются при температуре спекания, или вводят металлы или оксиды металлов, или гидроксиды металлов,которые можно удалить после спекания из подвергнутой спеканию структуры в результате кислотного выщелачивания, и, с другой стороны,( 19855998 А 1) газообразные порообразователи, с помощью которых получают адгезивно связанные высокопористые агломераты, которые при спекании в существенной мере сохраняют свою пористость. В этих способах порообразователи вводят на относительно поздних стадиях способа, на которых в спеченных агломератах уже содержатся замкнутые поры, так что не происходит создания эффективных помех для образования замкнутых пор. Далее, в том случае, когда используют органические порообразователи,недостатком является загрязнение тела анода конденсатора углеродом. И в связи с тем, что используются металлы и металлические соединения, наряду с возможным загрязнением, требуются существенные затраты для их удаления из спеченных структур. Задача данного изобретения состоит в получении порошков агломератов для конденсаторов, которые позволяют изготовлять тела анодов для конденсаторов с высокой скелетной плотностью. Задача данного изобретения также состоит в изготовлении анодов для конденсаторов с твердым электролитом, которые отличаются высокой скелетной плотностью и тем самым высокой объемной эффективностью(емкость/объем,/см 3). Далее, задача данного изобретения состоит в изготовлении тел анодов, которые при дальнейшей переработке в конденсатор приводят к лучшим пределам прочности проволоки на вырывание, к лучшим характеристикам по току утечки,эквивалентному последовательному сопротивлению и ударному току. Предметом данного изобретения являются тела анодов конденсаторов из вентильного металла и/или недоксида вентильного металла, предпочтительно тела анодов из ниобия, тантала и недоксида ниобия,более предпочтительно анодные тела из недоксида ниобия формулы , где 0,71,3, еще более предпочтительно где 0,81,1, со скелетной плотностью более 88 теоретической плотности,предпочтительно более 90,еще более предпочтительно более 92 теоретической плотности. Согласно изобретению могут быть достигнуты скелетные плотности вплоть до 94 и более теоретической плотности (компактного) анодного материала. В случае анодных тел,согласно данному изобретению, кумулятивный объем замкнутых пор составляет менее 12,предпочтительно менее 10,более предпочтительно менее 8, объема (компактного) анодного материала. В качестве вентильного металла, по смыслу данного изобретения, имеют в виду металлы группы ниобия, тантала и титана. Порошки агломерата,согласно данному изобретению,предпочтительно,состоят из спеченных первичных частиц со средними диаметрами поперечного сечения, определенными по снимкам на электронном микроскопе, от 0,1 до 2 мкм и с размерами агломератов, определенными согласноВ 822 (на приборе , со смачивающим средством даксад 11) 10 от 3 до 50 мкм, 50 от 20 до 200 мкм и 90 от 30 до 400 мкм. Частички порошка агломерата могут иметь различную форму,такую как шарики,деформированные шарики, волокна, осколки,нерегулярную морфологию и т.д.,предпочтительными являются шарообразные частички порошка агломерата, причем, все описанные формы обнаруживают малый объем замкнутых пор. Порошки агломерата обнаруживают хорошую текучесть (согласно Халлу ,В 213) менее 60 сек/25 г. Насыпная плотность(согласно Скотту ,В 329) может составлять в случае порошков недоксида ниобия и металлического ниобия предпочтительно от 0,7 до 1,3 г/см 3, в случае порошков металлического тантала от 1,0 до 2,5 г/см 3. Удельная поверхность(ВЕТ - удельная поверхность, определенная по способу Брунауэра, Эммета и Теллера (,, ),3663) предпочтительно составляет от 0,5 до 20 м 2/г. Порошки агломерата согласно данному изобретению предпочтительно имеют пористость, определяемую с помощью проникновения (интрузии) ртути (открытые поры),от 50 до 70 объемных процентов, причем, более 90 объема пор составляют поры с диаметром от 0,1 до 5 мкм. Содержание примесей, за исключением обычных легирующих средств, таких как азот, фосфор и/или ванадий, должно быть, по возможности, низким. Более предпочтительные порошки имеют содержание , С, , С, щелочных металлов менее 20 млн. долей , а также фторид и хлорид в каждом случае менее 50 млн. долей. Содержание углерода, предпочтительно, составляет менее 40 млн. долей. Содержание азота составляет от 10 до 6000 млн. долей. Содержание фосфора в порошках недоксида ниобия, согласно данному изобретению,как правило, не является вредным. В порошки металлического ниобия и тантала вводят до 500 млн. долей фосфора для понижения активности спекания во время получения вторичных структур и анодной структуры. При необходимости, перед спеканием структуры анода порошок можно обработать фосфорной кислотой, гидрофосфатом аммония или фосфатом аммония. Содержание других, менее критических примесей, таких как А,В, Са, М ипредпочтительно составляет менее 10 млн. долей,менее 20 млн. долей. Наряду с этим, отличительная черта порошков агломератов согласно данному изобретению по сравнению с порошками уровня техники состоит в увеличенном коэффициенте уплотненияиповышенном коэффициенте скольжения , которые приводят к лучшей прессуемости порошков. Предпочтительно произведение ВЕТ- поверхности в м 2/г и коэффициента скольженияв случае порошка недоксида ниобия, согласно данному изобретению, составляет от 0,33 до 0,75,предпочтительно от 0,4 5 до 0,58, в случае порошка тантала, согласно данному изобретению составляет от 0,62 до 0,95, предпочтительно от 0,65 до 0,86, в случае порошка ниобия согласно данному изобретению составляет от 0,38 до 0,8,предпочтительно от 0,4 2 до 0,6. Коэффициент уплотнения порошков агломератов согласно данному изобретению составляет предпочтительно более чем 0,07 для порошка недоксида ниобия и более чем 0,08 для порошков ниобия и тантала. Предметом данного изобретения,также,являются порошки агломератов недоксида ниобия,из которых после прессования до прессованной плотности 2,8 г/см 3 и спекания при температуре более 1340 С, предпочтительно при температуре более 1400 С, в течение 20 минут получают анодные тела со скелетной плотностью выше 88,предпочтительно выше 90, более предпочтительно выше 92. Предметом данного изобретения,далее,являются порошки агломератов тантала, из которых при прессовании до прессованной плотности более 5 г/см 3 и спекании при температуре равной или 3 более 1250 С в течение 20 минут получают анодные тела со скелетной плотностью выше 88,предпочтительно выше 90, более предпочтительно выше 92. Предметом данного изобретения,также,являются порошки агломератов ниобия, из которых при прессовании до прессованной плотности более 3,14 г/см 3 и спекании при температуре равной или более 1165 С, предпочтительно при температуре равной или более 1180 С в течение 20 минут получают анодные тела со скелетной плотностью выше 88. Предметом данного изобретения,также,являются способ получения порошков агломератов вентильных металлов и/или недоксидов вентильных металлов,который отличается тем,что предшествующие частицы порошков агломератов смешивают с мелкочастичными порообразователями, затем, путем уплотнения смеси и испарения, соответственно, разложения порообразователей получают богатый порами,адгезивно связанный агломерат предшествующих частиц, адгезивно связанный агломерат подвергают температурной обработке при температуре и в течение промежутка времени, достаточных для образования мостиков спекания, и, как минимум,частично подвергнутый спеканию агломерат далее перерабатывают известным способом в порошки агломератов вентильных металлов и/или недоксидов вентильных металлов. Уплотнение можно проводить в сухом виде компактированием смеси под давлением или в мокром виде путем образования шлама смеси,например, в воде, уплотнения шлама с помощью ультразвука, сливания находящегося сверху слоя жидкости и сушки. Предпочтительно получают агломераты тантала,ниобия и/или недоксида ниобия формулы , где 0,71,3, более предпочтительно 0,81,1. Используемые, согласно данному изобретению,предшествующие частицы предпочтительно представляют собой первичные частицы или вторичные частицы, построенные из нескольких первичных частиц вентильных металлов, в частности, ниобия и/или тантала, и/или их оксидов,в частности, пентоксидов ниобия и/или тантала, со средними размерами первичных частиц менее 1 мкм, более предпочтительно менее 0,5 мкм, более предпочтительно менее 0,3 мкм в направлении меньшей протяженности. Частицы могут иметь любую форму. Предшествующие частицы предпочтительно имеют удельную поверхность более 80 м 2/г, более предпочтительно более 100 м 2/г. Более предпочтительно в качестве предшествующих частиц используют гидроксиды,соответственно, гидратированные пентоксиды,которые получают при осаждении аммиаком из водных растворов фторидов ниобия и/или тантала,которые еще имеют достаточное содержание воды от 25 до 35 вес. процентов и удельную поверхность более 180 м 2/г (в случае ), соответственно,100 м 2/г (в случае Та). В качестве порообразователей, предпочтительно,используют аммониевые соли, такие как галоидиды,карбонаты или оксалаты. Более предпочтительно используют хлорид аммония и/или оксалат аммония. Порообразователи используют,предпочтительно, со средним размером частиц от 0,5 до 20 мкм, более предпочтительно от 1,0 до 10 мкм, еще более предпочтительно от 1,5 до 5 мкм, в количестве от 10 до 90 объемных процентов,предпочтительно от 15 до 60 об. процентов, более предпочтительно от 20 до 50 об. процентов, еще более предпочтительно от 30 до 45 об. процентов, в пересчете на объем предшествующих частиц. В случае мокрого уплотнения, предпочтительно,из предшествующих частиц приготавливают шлам с водой. Также пригодны другие легко испаряемые органические жидкости с хорошим смачиванием,такие как метанол, спирты, кетоны и/или сложные эфиры, а также их смеси с водой. Вместе с образованием шлама предшествующих частиц интенсивно перемешивается мелкочастичный порообразователь. Затем смесь уплотняют встряхиванием, предпочтительно с помощью ультразвука. Воду, собирающуюся при необходимости над твердой массой, удаляют, так что получается влажный пирог. Затем влажный пирог, состоящий из смеси предшествующих частиц и частиц порообразователя, сушат при медленном нагревании до температуры вплоть до 150 С в транспортном газовом потоке, и при дальнейшем медленном нагревании до температуры 350-600 С полностью удаляют порообразователь из пирога. В качестве альтернативы,можно,предшествующие частицы,вместе с мелкочастичными порообразователями,после интенсивного сухого перемешивания уплотнить под давлением от 30 до 100 бар и затем соответствующим образом, в результате нагревания,удалить порообразователь. Сухой пирог, состоящий из адгезивно связанных предшествующих частиц,нагревают,при необходимости после измельчения и просеивания,до температуры, достаточной для образования мостиков спекания, так что образуется спеченный открытопористый предшествующий порошок агломерата с большим объемом пор, в котором в существенной мере отсутствуют замкнутые поры. Спеченный предшествующий порошок агломерата перерабатывают известным образом, как описано ниже, в порошок агломерата вентильного металла и/или недоксида вентильного металла. Предметом данного изобретения, далее, является способ получения порошка агломерата вентильного металла и/или оксида вентильного металла, который отличается тем, что из предшествующих частиц порошка агломерата образуют шлам с водой,содержащей перекись водорода или двуокись углерода,путем сушки удаляют воду,высвобождают газообразный кислород или двуокись углерода, получая таким образом богатый порами,адгезивно связанный агломерат предшествующих частиц,затем адгезивно связанный агломерат подвергают термической обработке при температуре и времени, достаточных для образования мостиков спекания, и, как минимум, частично спеченный агломерат далее перерабатывают известным образом в порошки агломератов вентильных металлов и/или оксидов вентильных металлов. Во время сушки шлама из него удаляют воду,причем,перекись водорода разлагается с высвобождением кислородного газа,соответственно,превышается граница растворимости двуокиси углерода в оставшейся воде. Мелкочастичные предшествующие частицы в шламе действуют в качестве зародышей пузырьков для высвобождающегося газа. До тех пор, пока существует достаточная влажность, пузырьки не могут покинуть шлам или агломерироваться в большие пузыри, так что образуется пирог с открытыми порами с большим объемом пор. Размеры пор, образуемых пузырьками, и объем пор пирога можно регулировать первоначально растворенной двуокисью углерода, соответственно,перекисью водорода. Получение шлама, в случае использования двуокиси углерода в качестве порообразователя,можно, также, проводить таким образом, что диспергирование предшествующих частиц в воде осуществляется в атмосфере двуокиси углерода или предпочтительно используемые гидроксиды,соответственно, гидратизированные пентоксиды,такие, которые выпадают при осаждении из водных растворов фторидов ниобия и/или тантала аммиаком, имеющие еще достаточное содержание воды от 25 до 35 вес. процентов и удельную поверхность более 100 м 2/г, перемешивают в атмосфере двуокиси углерода, при необходимости,под давлением. Полученный сухой пирог для полного удаления воды нагревают до температуры 100-500 С. Сухой пирог, состоящий из адгезивно связанных предшествующих частиц, при необходимости после измельчения и просеивания нагревают до температуры,достаточной для образования мостиков спекания, так что образуется спеченный порошок предварительного агломерата с открытыми порами, который в существенной мере свободен от закрытых пор. Так как в качестве предшествующих порошков использовали металлические порошки ниобия и/или тантала, то полученные из них спеченные предшествующие порошки агломератов в результате смешивания с магниевыми опилками и нагревания в атмосфере с отсутствием кислорода или в глубоком вакууме дезоксидируют и затем размалывают до необходимых размеров агломерата. При необходимости можно известным путем провести легирование азотом и/или фосфором,и/или ванадием, пропитывая перед дезоксидацией растворами соединений, содержащих азот и/или фосфор, и/или ванадий. В том случае, когда в качестве предшествующих порошков используют пентоксиды, их известным образом согласно 00/67936, в случае пентоксида ниобия вначале нагреванием в атмосфере,содержащей водород, восстанавливают до диоксида,газообразным магнием восстанавливают до металла и при необходимости легируют. Для получения -порошков, где х имеет приведенные выше значения,исходят из приведенного выше пентоксидного предшествующего порошка агломерата. Этот порошок, при необходимости, после восстановления водородом до диоксида, тщательно перемешивают со стехиометрическим количеством мелкочастичного металлического порошка ниобия и нагревают в атмосфере, содержащей водород, так что происходит обмен кислородом между оксидом и металлом. Предпочтительно в качестве мелкочастичного металлического порошка ниобия используют полученный согласно данному изобретению предшествующий порошок агломерата металлического ниобия. В соответствии с другим предпочтительным способом предшествующий порошок агломерата пентоксида,при необходимости,после восстановления водородом вместе с порошком металлического ниобия снова перемешивают с порообразователями,уплотняют,удаляют порообразователь, при необходимости просеивают и адгезивно связанный агломерат из смеси порошков нагревают в атмосфере водорода, чтобы вызвать выравнивание содержания кислорода. Порошки недоксида ниобия, металлического ниобия и металлического тантала согласно данному изобретению подходят для изготовления обычными способами конденсаторов с твердыми электролитами с удельными емкостями от 20.000 до 300.000 мкФВ/г и с очень малыми токами утечки,которые меньше чем 1 нА/мкФВ, предпочтительно меньше чем 0,2 нА/мкФВ. При этом, порошок для изготовления анодных тел для конденсаторов помещают в пресс-форму вокруг вложенного в нее ниобиевого или танталового провода в присутствии связующих средств и средств, способствующих скольжению и прессуют до достижения прессованной плотности от 2,3 до 3,5 г/см 3 в случае порошка ниобия или недоксида ниобия, соответственно, от 4,5 до 7 г/см 3 в случае порошка тантала в заготовки, причем,заготовки сохраняются с очень благоприятной прессованной прочностью. Прессованные тела,содержащие контактный провод, затем подвергают спеканию предпочтительно в ниобиевой или танталовой лодочке при температуре от 1000 до 1500 С в течение времени спекания от 10 до 25 минут в глубоком вакууме при давлении 10-8 бар. Температуру спекания и время спекания предпочтительно выбирают такими,чтобы рассчитываемая позже из емкости конденсатора удельная поверхность конденсатора еще составляла от 65 до 45 удельной поверхности, измеренной для порошка. Предметом изобретения, далее, являются конденсаторы, содержащие спеченное тело анода для конденсатора из вентильного металла или недоксида вентильного металла. Конденсаторы согласно данному изобретению можно использовать в различных электрических устройствах. Примеры А) Получение предшествующих частиц 1 В приемник с 100 л деионизованной воды непрерывно подают свыше 15 часов 75 л/час водного 27-ев с концентрацией 81 г/ли 75 л/час 9-процентного водного 3-раствора, так что -значение составляет 7,60,4. Температуру раствора поддерживают около 63 С. Полученную суспензию фильтруют через фильтр Нутче,находящийся под давлением, промывают 3 процентным водным 3-раствором и затем деионизованной водой. Полученный влажный гидроксид ниобиясушат в течение 24 часов при температуре 100 С в сушильном шкафу. Полученный гидроксид ниобияимеет удельную поверхность 201 м 2/г и сферическую морфологию. 2 К 100 объемным частям раствора этоксида ниобиядобавляют при перемешивании 40 объемных частей деионизованной воды. Осажденный гидроксид ниобия(ниобиевую кислоту) фильтруют через фильтр Нутче и промывают деионизованной водой. Затем сушат гидроксид ниобияв течение 17 часов при температуре 100 С. Порошок обладает удельной поверхностью 130 г/м 2 и нерегулярной морфологией. 3 Предшествующие частицы 1 кальцинируют в течение 4 часов при температуре около 500 С на воздухе и после этого размалывают на струйной мельнице до размеров 90 менее 10 мкм (приборбез обработки ультразвуком). Получают 25 с удельной поверхностью 89 м 2/г. 4 В приемник с 100 л деионизованной воды непрерывно подают свыше 30 часов 75 л/час водного 27-тв с концентрацией 155,7 г/л Та и непрерывно подают 75 л/час 9-процентного водного 3-раствора, так что -значение составляет 7,60,4 и температура раствора поддерживается около 69 С. После фильтрования,промывания 3-процентным 3-раствором и деионизованной водой и сушки в течение 24 часов при температуре 100 С получают гидроксид тантала с удельной поверхностью 106 м 2/г и сферической морфологией. 5 Предшествующие частицы 4 кальцинируют в течение 2 часов при температуре около 500 С на воздухе и после этого размалывают на струйной мельнице до размеров 90 менее 10 мкм. Получают порошок Та 25 с удельной поверхностью 83 м 2/г. В) Получение спеченных порошков агломератов пентоксида (Р 1 Р 14) Для получения спеченных порошков пентоксида 1-Р 14 используют предшественники, приведенные в таблице 1, столбец 1. Предшественники перемешивают с приведенным в таблице 1, столбец 3 количеством (вес. процентов в пересчете на пентоксид) приведенного в столбце 2 порообразователя со средним размером частиц 1,5 мкм или в водной суспензии (мокро в столбце 4), или в сухом виде (сухо в столбце 4). В случае мокрого перемешивания суспензию осажденной смеси твердого вещества уплотняют с помощью ультразвука, настоящую воду сливают и сушат при температуре около 110 С в течение 15 часов. В случае сухого перемешивания сухую смесь порошков уплотняют гидравлическим лабораторным прессом (диаметр матрицы 5 см,высота заполнения 3 см) под давлением 75 бар в течение 1 минуты.(4)2(24) Р 10 4 Р 11 4 4 Р 12 4 Р 13 5 4 Р 14 5 Высушенные (адгезивно связанные агломераты) соответственно, спрессованные смеси порошков затем для разложения порообразователей нагревают 6 4 Уплотнение мокро мокро мокро мокро мокро мокро сухо сухо мокро мокро сухо сухо сухо сухо при температуре, указанной в столбце 5 таблицы 1 в течение промежутка времени также указанного там. После этого следует спекание на воздухе при температуре и в течение промежутка времени,указанных в столбце 6. Спеченные агломераты измельчают щековой дробилкой, перемалывают на вальцовой мельнице и просеивают с получением частиц менее 300 мкм. С) Получение порошков металлов (1 - М 14) Порошки пентоксидов 1-Р 14 в случае пентоксида ниобия после восстановления до диоксида ниобия с помошью водорода при температуре 1300 С, в результате восстановления парами магния при температуре 900 С в аргоне, в качестве транспортного газа в течение 6 часов, охлаждения, пассивирования, просеивания до размера менее 300 мкм, удаления оксида магния с помощью 8-процентной серной кислоты и нейтрального промывания деионизированной водой переводят в порошки металлов 1 - М 14. В таблице 2 приведены значения ВЕТ-поверхностей, 50 значения согласно измерениям на приборе Мастерсайзер(без ультразвуковой обработки) и суммы содержания примесей железа,хрома и никеля, примесей фтора и хлора и примесей натрия и калия. Таблица 2) Получение порошков недоксида ниобия (1 10) Для получения порошков недоксида ниобия берут в каждом случае пентоксид ниобия,указанный в столбце 1 таблицы 3, с трехкратным стехиометрическим количеством металлического ниобия, приведенного в столбце 2 таблицы 3, и приведенный в столбце 3 порообразователь (20 вес. процентов в пересчете на металл и пентоксид) и перемешивают в сухом виде, уплотняют при давлении 75 бар и нагревают в течение 3 часов при температуре 600 С для удаления порообразователя. Затем сухой пирог нагревают в атмосфере водорода в течение 4 часов при температуре превращения, указанной в таблице 3, охлаждают,пассивируют и просеивают до размеров менее 300 мкм. В таблице 6 приведены ВЕТ-поверхности,50-значения согласно измерениям на приборе Мастерсайзер (без ультразвуковой обработки) и суммы содержания примесей железа, хрома и никеля, примесей фтора и хлора и примесей натрия и калия. Далее приведены коэффициент уплотненияи коэффициент скольжения , которые описаны ниже,а также приведены произведения коэффициента скольженияи ВЕТ-поверхности. Таблица 3 Е) Получение дезоксидированных порошков агломератов металлов (1 - 14) Порошки- М 8 и М 10 - М 14 для дезоксидации в каждом случае смешивают с 8 вес. процентами(металлического порошка ниобия), соответственно,5 вес. процентами опилок магния и с таким количеством раствора 424,которого достаточно для легирования 100 млн. долями фосфора, и нагревают в течение 2 часов в атмосфере аргона при температуре 850 С, затем охлаждают,пассивируют и просевают с получением частиц менее 300 мкм. Две пробы порошка М 9 дезоксидируют при температуре 850 и 750 С и затем обозначают их как М 9 а и М 9. В таблицах 4 и 5 7 приведены значения ВЕТ-поверхности, 50 значения согласно измерениям на приборе Мастерсайзер (без обработки ультразвуком) и суммы содержания примесей железа, хрома и никеля, примесей фтора и хлора и примесей натрия и калия. Далее приведены коэффициент уплотненияи коэффициент скольжения , которые описаны ниже,а также приведены произведения коэффициента скольженияи ВЕТ- поверхности . Пример Дезоксидированный металлический порошок ниобия Предшествующий порошок, млн.долей 50, мкм 90, мкм Коэффициент уплотненияКоэффициент скольженияВЕТ, м 2/гВЕТ Аноды Плотность прессования,г/см 3 Температура пекания,С Скелетная плотность,Из дезоксидированых порошков металлов 14 и порошков недоксидов 1 - 8 изготавливают анодные тела с диаметром 3,6 мм и длиной 3,6 мм,для этого внутрь прессформы закладывают танталовый провод толщиной 0,3 мм, вокруг которого насыпают порошок и прессуют до плотности прессования, приведенной в таблицах 4, 5 и 6 в г/см 3, а затем спекают в глубоком вакууме в течение 20 минут при температуре, приведенной в таблицах в С. Таблица 4 Пример Металлический порошок дезоксидированного Та Предшественник порошка Та Коэффициент скольженияВЕТ м 2/гВЕТ Аноды Прессованная плотность,г/см 3 Температура спекания, С Склелетная плотность,, млн.долей 50, мкм 90, мкм Коэффициент сжатияКоэффициент скольжениям 2/гВЕТ Аноды Прессованная плотность, г/см 3 Температура спекания, С Скелетная плотность,Коэффициент сжатия(компактность ) и коэффициент скольженияопределяют на установке по тестированию порошков-03 фирмы., , , США. Определение коэффициента сжатия проводят таким образом, что порошок (без связующих или средств, способствующих скольжению) заполняют в матрицу диаметром 12,7 мм и прессующим пуансоном сжимают до высоты Н 12,694 мм,причем давление рс прессующего пуансона измеряют во время прессования. Типичная диаграмма зависимости плотности от давления прессования (сжатия) для пробы из недоксида ниобия приведена на фиг.1. Коэффициент сжатия (уплотнения)определяют с помощью следующего уравнения 0)/р 0),причем,описывает плотность утруски порошка,ра описывает среднюю плотность прессованного тела после сжатия при давлении р и р 0 описывает гравитационное давление порошка (вес порошка,деленный на поперечное сечение матрицы). Для определения коэффициента скольжения дополнительно измеряют давлениена дне матрицы при достижении прессованной плотности 4,8 г/см 3 в случае тантала, 3,14 г/см 3 в случае ниобия и 2,8 г/см 2 в случае недоксида ниобия. При этом коэффициент скольженияопределяют по следующей формуле//4,причем,означает длину окружности поперечного сеченияиозначает площадь поперечного сечения 2/4. ФОРМУЛА ИЗОБРЕТЕНИЯ вентильного металла, отличающееся тем, что оно имеет скелетную плотность, превышающую 88 теоретической плотности. 2. Спеченное анодное тело по п.1,отличающееся тем, что скелетная плотность составляет более 90, предпочтительно более 92 теоретической плотности. 3. Спеченное анодное тело по п.1 или 2,отличающееся тем, что оно имеет состав ,причем, 0,71,3. 4. Спеченное анодное тело по п.1 или 2,отличающееся тем, что оно состоит из тантала или ниобия. 5. Спеченное анодное тело по п.1,отличающееся тем, что его получают путем прессования порошка агломерата субоксида ниобия до прессованной плотности 2,8 г/см 3 и спекания при температуре более/равной 1340 С в течение 20 минут. 6. Спеченное анодное тело по п.1,отличающееся тем, что его получают путем прессования порошка агломерата тантала до прессованной плотности 5 г/см 3 и спекания при температуре более/равной 1250 С в течение 20 минут. 7. Спеченное анодное тело по п.1,отличающееся тем, что его получают путем прессования порошка агломерата ниобия до прессованной плотности 3,14 г/см 3 и спекания при температуре более/равной 1165 С в течение 20 минут. 8. Порошок агломерата субоксида ниобия для изготовления спеченного анодного тела по п.5,отличающийся тем, что у него произведение ВЕТповерхности в м 2/г и коэффициента скольжениясоставляет от 0,33 до 0,75, предпочтительно от 0,45 до 0,58. 1. Спеченное анодное тело конденсатора на основе вентильного металла и/или субоксида 9 9. Порошок агломерата субоксида ниобия по п.8,отличающийся тем, что он имеет коэффициент уплотнения более 0,07. 10. Порошок агломерата тантала для изготовления спеченного анодного тела по п.6,отличающийся тем, что у него произведение ВЕТповерхности в м 2/г и коэффициента скольжениясоставляет от 0,62 до 0,95, предпочтительно от 0,65 до 0,86. 11. Порошок агломерата тантала по п.10,отличающийся тем, что он имеет коэффициент уплотнения более 0,08. 12. Порошок агломерата ниобия для изготовления спеченного анодного тела по п.7,отличающийся тем, что у него произведение ВЕТповерхности в м 2/г и коэффициента скольжениясоставляет от 0,38 до 0,8, предпочтительно от 0,42 до 0,6. 13. Порошок агломерата ниобия по п.12,отличающийся тем, что он имеет коэффициент уплотнения более 0,08. 14. Способ получения порошков агломератов вентильных металлов и/или субоксидов вентильных металлов, пригодных для изготовления спеченных анодных тел для конденсаторов, который отличается тем, что предшествующие частицы порошков агломератов смешивают с мелкочастичными порообразователями,путем уплотнения смеси создают богатый порами,адгезивно связанный агломерат предшествующих частиц, термически удаляют порообразователь,адгезивно связанный агломерат подвергают температурной обработке при температуре и в течение промежутка времени, достаточных для образования мостиков спекания, и, как минимум,частично спеченный агломерат далее перерабатывают известным способом в порошки агломератов вентильных металлов и/или субоксидов вентильных металлов. 15. Способ по п.14, отличающийся тем, что в качестве порообразователей используют соли аммония с температурой испарения, сублимации или разложения менее 600 С. 16. Способ по п.15, отличающийся тем, что в качестве порообразователей используют мелкочастичный хлорид аммония и/или оксалат аммония. 17. Способ по п.14, отличающийся тем, что порообразователь используют в количестве от 10 до 90 объемных процентов в пересчете на объем предшествующего соединения. 18. Способ по п.п.14-17, отличающийся тем,что предшествующие частицы имеют удельную поверхность более 80 м 2/г, предпочтительно более 100 м 2/г. 19. Способ получения порошков агломератов вентильных металлов и/или субоксидов вентильных металлов, пригодных для изготовления спеченных анодных тел для конденсаторов, который отличается тем, что из предшествующих частиц порошков агломератов образуют шлам в перекиси водорода или в воде, содержащей двуокись углерода, путем сушки удаляют воду с высвобождением кислородного газа или двуокиси углерода, так что образуется богатый порами,адгезивно связанный агломерат предшествующих частиц, этот адгезивно связанный агломерат подвергают температурной обработке при температуре и в течение промежутка времени,достаточных для образования мостиков спекания, и,как минимум, частично спеченный агломерат далее перерабатывают известным способом в порошки агломератов вентильных металлов и/или субоксидов вентильных металлов. 20. Способ по п.19, отличающийся тем, что предшествующие частицы имеют удельную поверхность более 80 м 2/г, предпочтительно более 100 м 2/г. 21. Аноды конденсаторов, отличающиеся тем,что их получают путем формования спеченного анодного тела конденсатора по одному из п.п.1-7. 22. Аноды конденсаторов, отличающиеся тем,что их получают путем прессования и спекания порошков агломератов по одному из п.п.8-13. 23. Конденсатор, отличающийся тем, что содержит спеченное анодное тело конденсатора из вентильного металла и/или субоксида вентильного металла, как минимум, по одному из п.п.1-7. 24. Конденсатор, отличающийся тем, что содержит анод конденсатора по п.21 и 22. 25. Применение конденсаторов по п.23 или 24 в электрических устройствах.

МПК / Метки

МПК: H01G 9/052, B22F 1/00, C22B 34/24

Метки: оксидов, порошки, агломератов, металлов, получения, способ, вентильных

Код ссылки

<a href="http://kzpatents.com/10-28055-poroshki-aglomeratov-ventilnyh-metallov-i-oksidov-ventilnyh-metallov-i-sposob-ih-polucheniya.html" rel="bookmark" title="База патентов Казахстана">Порошки агломератов вентильных металлов и оксидов вентильных металлов и способ их получения</a>

Похожие патенты