Пористое тело анода, твердотельный конденсатор, включающий указанное тело, и электрическое или электронное устройство, включающее указанный конденсатор

Есть еще 4 страницы.

Смотреть все страницы или скачать PDF файл.

Формула / Реферат

Описан конденсатор, изготовленный из порошкообразного субоксида ниобия, обладающий более высоким напряжением пробоя, более высокой рабочей температурой и увеличенным сроком годности. Он легирован азотом, который, по меньшей мере, частично содержится в виде равномерно распределенных, обнаруживаемых с помощью рентгеноструктурного анализа кристаллических доменов Nb2N.

Текст

Смотреть все

(2009.01) 01 33/00 (2009.01) 22 32/00 (2009.01) КОМИТЕТ ПО ПРАВАМ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ МИНИСТЕРСТВА ЮСТИЦИИ РЕСПУБЛИКИ КАЗАХСТАН(54) ПОРИСТОЕ ТЕЛО АНОДА,ТВЕРДОТЕЛЬНЫЙ КОНДЕНСАТОР,ВКЛЮЧАЮЩИЙ УКАЗАННОЕ ТЕЛО, И ЭЛЕКТРИЧЕСКОЕ ИЛИ ЭЛЕКТРОННОЕ УСТРОЙСТВО,ВКЛЮЧАЮЩЕЕ УКАЗАННЫЙ КОНДЕНСАТОР(57) Описан конденсатор, изготовленный из порошкообразного субоксида ниобия, обладающий более высоким напряжением пробоя, более высокой рабочей температурой и увеличенным сроком годности. Он легирован азотом, который, по меньшей мере, частично содержится в виде равномерно распределенных, обнаруживаемых с помощью рентгеноструктурного анализа кристаллических доменов 2. 23631 Настоящее изобретение относится к области конденсаторов, точнее, к пористому телу анода,полупроводниковому конденсатору, включающему указанное тело, и к электрическому или электронному устройству, включающему указанный конденсатор. Оксидные полупроводниковые конденсаторы,применяющиеся в мобильных коммуникационных устройствах, обычно содержат электропроводящий носитель,обладающий большой удельной площадью поверхности, покрытый непроводящим слоем пентаоксида ниобия или тантала,использующий высокую стабильность и большую диэлектрическую постоянную вентильного оксида металла, где изолирующий слой пентаоксида может быть образован при постоянной толщине путем электролитического осаждения. В качестве материала носителя используют вентильный металл или проводящие низшие оксиды (субоксиды, ) вентильных металлов. Носитель, который образует один из электродов (анод) конденсатора, обычно обладает губчатой структурой, которая образуется спеканием очень мелких первичных частиц или губчатых вторичных структур. Поверхность структуры проводящего носителя подвергают электролитическому окислению (формуют) и толщина изолирующего слоя пентаоксида определяется максимальным напряжением электролитического окисления(напряжением формования). Противоэлектрод формируют путем пропитывания губчатой структуры с окисленной поверхностью нитратом марганца,который термически превращают в диоксид марганца, или путем пропитывания жидким предшественником полимерного электролита(например,полиэтилендиокситиофена, полипиррола) и его полимеризации. Электрическими выводами являются танталовая и ниобиевая проволоки,спеченные с губчатой структурой со стороны анода и металлическим кожухом конденсатора, который изолирован от проволоки со стороны катода. Емкость С конденсатора рассчитывают по формуле/, в которой- активная поверхность конденсатора,-диэлектрическая постоянная слоя пентаоксида,- толщина изолирующего слоя пентаоксида на 1 В формующего напряжения и- формующее напряжение. Отношения / для пентаоксида тантала и пентаоксида ниобия являются почти одинаковыми(1,64 и 1,69 соответственно), хотя значения(27,6 и 41 соответственно) и(16,6 и 25 А/В соответственно) существенно различны. В соответствии с этим конденсаторы на основе обоих пентаоксидов и обладающие одинаковой геометрической структурой обладают одинаковой емкостью. Удельные емкости в пересчете на массу различны вследствие различной плотности ,и Та. В связи с этим структуры носителя (анода) изилиимеют преимущества в экономии веса при использовании для мобильных телефонов, для которых одной из задач является снижение массы. С точки зрения экономичностиявляется более привлекательным, чем , поскольку часть объема 2 структуры анода занимает кислород. Наиболее близким аналогом является описанный в ЕР 1388870 А 1 порошкообразный монооксид ниобия, сам конденсатор, в котором использован продукт,полученный из монооксида ниобия. Однако данный электролитический конденсатор не полностью удовлетворяет требованиям, предъявляемым к характеристикам подобных конденсаторов и к срокам их службы. Важным критерием качества является срок службы конденсатора, который зависит от его рабочего напряжения и уменьшается при повышении напряжения. Для расширения диапазона применения желательно увеличение срока службы, в особенности при высоких значениях рабочего напряжения. Кроме того,желательно повысить рабочую температуру. В настоящее время рабочая температура конденсаторов на основеограничена значением, равным примерно 125 С. Более высокая допустимая рабочая температура позволит использовать конденсаторы на основев автомобильной промышленности. Кроме того, с точки зрения безопасности желательно повысить напряжение пробоя и уменьшить скорость сгорания,а также уменьшить выделение тепла при сгорании после зажигания спеченными анодными структурами и конденсаторами. Объектом настоящего изобретения является конденсатор,изготовленный из субоксида ниобия, обладающий улучшенными характеристиками,обеспечивающими эксплуатацию при более высокой температуре. Другим объектом настоящего изобретения является конденсатор, изготовленный из субоксида ниобия, обладающий повышенным напряжением пробоя. Другим объектом настоящего изобретения является анодная структура,изготовленная из порошкообразного субоксида ниобия, и конденсатор, включающий указанную анодную структуру с уменьшенной скоростью сгорания и уменьшенным выделением тепла после зажигания. Настоящее изобретение обеспечивает осуществление этого и других объектов. Таким образом,настоящее изобретение относится к пористому телу анода,предназначенному для применения в полупроводниковом конденсаторе, получаемом из порошкообразного субоксида ниобия, содержащего частицы субоксида ниобия, обладающие объемным содержанием азота, равным от 500 до 20000 частей на миллион (чнм), предпочтительно - от 1000 до 8000 чнм, более предпочтительно - от 3000 до 5000 чнм, указанный порошок агломерирован и коалесцирован с образованием единого пористого тела анода. В пористом теле анода, настоящего изобретения,азот, по меньшей мере, частично содержится в форме кристаллов 2 или кристаллов оксинитрида ниобия у. В пористом теле анода, настоящего изобретения,кристаллы 2 обладают размером, достаточным для проявления пика рентгеновского излучения С при угле 2, равном примерно 38,5. 23631 В теле анода настоящего изобретения, высота пика 2 примерно при 238,5 составляет от 2 до 25 от высоты пикапри 230. В пористом теле анода настоящего изобретения пик С 1 расположенный примерно при 238,5 обладает полушириной, равной от 0,05 до 0,2. Пористое тело анода,соответствующее настоящему изобретению,включает порошкообразный субоксид ниобия, в котором частицы являются агломератами первичных частиц,обладающих средним диаметром, равным от 0,1 до 1,5 мкм, предпочтительно - от 0,3 до 1,0 мкм. Субоксид ниобия обладает составомпри 0,7 х 1,3, предпочтительно -1 х 1,033. Содержание кислорода равно от 14,5 до 15,1 мас. . Пористое тело анода настоящего изобретения можно получить из порошкообразного субоксида ниобия,обладающего указанными выше характеристиками, такими, что время сгорания равно более 5 мин, когда 50 г порошка помещают на участке размером 150 х 30 мм на лист ниобия толщиной 0,1 мм и поджигают с одного конца. Пористое тело анода,соответствующее настоящему изобретению,пригодно для изготовления электролитических конденсаторов. Пористое тело анода настоящего изобретения включает порошкообразный субоксид ниобия,агломерированный и коалесцированный с образованием единого пористого тела анода, в котором субоксид ниобия, содержащийся в теле,обладает объемным содержанием азота, равным от 500 до 20000 чнм 1. Пористое тело анода предпочтительно формовать путем прессования и спекания указанного порошка. Настоящее изобретение также относится к полупроводниковому конденсатору, включающему пористое тело анода, описанное выше. Полупроводниковый конденсатор настоящего изобретения обычно также включает диэлектрический слой,сформированный на поверхностях указанного пористого тела анода, и проводящий катодный слой, сформированный на указанном диэлектрическом слое. В конденсаторе настоящего изобретения тело анода и катодный слой электрически соединены с соответствующими выводами анода и катода конденсатора. Обычно такой конденсатор можно заключить в изолирующий материал, кроме наружных поверхностей выводов анода и катода. Конденсатор настоящего изобретения с успехом можно использовать в электрических или электронных устройствах. Примерами таких устройств являются электрические или электронные устройства, выбранные из группы, включающей телефоны,радиоприемники,телевизоры,компьютеры и устройства перезарядки аккумуляторов. Тело анода, содержащее субоксид ниобия,включает частицы субоксида ниобия, обладающие объемным содержанием азота, равным от 500 до 20000 чнм, предпочтительно - от 1000 до 10000 чнм. Более предпочтительным является содержание азота, равное от 2000 до 8000 чнм, особенно предпочтительно - от 3000 до 5000 чнм. Предпочтительно,азот содержится в порошкообразном субоксиде ниобия, настоящего изобретения, по меньшей мере, частично в виде кристаллов 2 или кристаллов оксинитрида ниобия . В технологии танталовых конденсаторов хорошо известно, что поверхностный азот оказывает благоприятное влияние на спекание порошкообразного тантала, а также уменьшает ток утечки для танталовых конденсаторов. В отличие от этого,важной особенностью настоящего изобретения является то, что азот квазиравномерно распределен по объему порошкообразных частиц,по меньшей мере, частично в виде очень небольших кристаллических доменов 2, количество и размер которых являются достаточно большими,чтобы при исследовании с помощью рентгенографии с использованием излучения С можно было зарегистрировать пик при угле 2,равном примерно 38,5 (101-отражение для 2). Предпочтительно, высота пика 2 примерно при 238,5, составляет менее 25 от высоты пикапри 230 (110-отражение для ),более предпочтительно - менее 15 от высоты пикапри 230. Кроме того,предпочтительные порошкообразные вещества при исследовании с помощью рентгенографии с использованием излучения С обладают пиком при 238,5,высота которого составляет не менее 2,предпочтительно - не менее 5 от высоты пикапри 230. В более широком диапазоне содержания азота можно зарегистрировать дополнительные фазы кристаллического нитрида. Точнее,можно зарегистрировать 43, 0,77, 0,770,091,0,64, 0,9, 0,95, 4,622,14, 43,92, 45,56, 0,801,и т. п. или их смеси, или оксинитриды ниобия, такие как 0,6 О 0,3,0,6 О 0,2, 0,90,1, (,) и т. п. или их смеси друг с другом или с нитридами ниобия. В частности,можно зарегистрировать 0,77, 0,95,и т. п. или оксинитрид ниобия. Полуширина пика,полученного с использованием излучения С 1 примерно при 238,5 101)-пик для 2), предпочтительно составляет от 0,05 до 0,2, более предпочтительно от 0,07 до 0,15, при исследовании с использованием гониометра 3050, анода С при 50 кВ и 40 мА, обладающего щелью расхождения и щелью, препятствующей рассеянию, равными 1/22, приемной щелью шириной 0,2 мм, щелью Соллера с углом 0,04 рад,диафрагмой луча шириной 20 мм, причем детектор пропорционален заполненному Хе. В программе сканирования шаг равен 0,012, скорость сканирования равна 0,0012/с в диапазоне от 37,7 до 39,52. Отражение СК 2 удалено. Предпочтительно тело анода настоящего изобретения, получено из субоксида ниобия,обладающего распределением зерен по размеру,3 23631 характеризующимся значением 10, равным от 50 до 90 мкм, значением 50, равным от 150 до 210 мкм, и значением 90, равным от 250 до 350 мкм,определенным в соответствии со стандартомВ 822 (, смачивающий реагент 11). Особенно предпочтительными являются порошки,обладающие сферическими или эллиптическими зернами,характеризующиеся хорошей сыпучестью, составляющей менее 80 с/25 г, предпочтительно - 60 с/25 г, особенно предпочтительно - 40 с/25 г, определенной в соответствии со стандартомВ 213(Сыпучесть по Холлу). Объемная плотность таких порошков обычно равна от 0,5 до 2 г/см 3,предпочтительно - от 0,9 до 1,2 г/см 3 (от 14,8 до 19,7 г/дюйм 3), определенная в соответствии со стандартомВ 329 (Плотность по Скотту). Тело анода настоящего изобретения можно получить из отдельных зерен или частиц порошкообразного субоксида ниобия, которые являются высокопористыми агломератами плотных первичных частиц среднего размера, обладающих наименьшим диаметром сечения, равным от 0,1 до 1,5 мкм, предпочтительно - от 0,3 до 1,0 мкм. Первичные частицы могут обладать сферической,чешуйчатой или волокнистой структурой. Предпочтительно, наименьший диаметр сечения первичных частиц равен от 0,4 до 1 мкм. Пористость анодов, спеченных из порошка согласно настоящему изобретению, определенная с помощью ртутного порозиметра, предпочтительно составляет от 50 до 70 об. , особенно предпочтительно - от 53 до 65 об. . Более 90 объема пор составляют поры, обладающие диаметром, равным от 0,2 до 2 мкм. Широкая кривая распределения пор по размерам с обеих сторон обладает крутыми участками и минимумом в области двоенного диаметра первичных частиц. Обычно,удельная площадь поверхности порошков, которые используются для производства пористого тела анода настоящего изобретения,равна от 0,5 до 12,0 м 2/г, предпочтительно - от 0,6 до 6 м 2/г, более предпочтительно - от 0,7 до 2,5 м 2/г,определенной в соответствии со стандартом 3663 (Площадь поверхности, определенная по методике БЭТ (по изотерме Брунауэра-ЭметтаТеллера),особенно предпочтительно,если удельная площадь поверхности равна от 0,8 до 1,3 м 2/г или от 0,8 до 1,2 м 2/г. Конденсаторы, изготовленные из пористого тела анода согласно настоящему изобретению, могут обладать удельной емкостью, равной от 40000 до 300000 мкФВ/г, обычно - от 60000 до 200000 мкФВ/г. Предпочтительно, порошкообразные оксиды ниобия настоящего изобретения обладают составом,соответствующим формулепри 0,7 х 1,3,что соответствует содержанию кислорода, равному от 10,8 до 18,3 мас. , особенно предпочтительны порошки с 1,0 х 1,033 или порошки,обладающие содержанием кислорода, равным от 14,5 до 15,1 мас. . 4 Обычно, примесей в пористом теле анода согласно настоящему изобретению должно быть как можно меньше, особенно вредные примеси в материалах, применяющихся в конденсаторах, такие как , , , С, ,и , содержатся в количестве, составляющем для каждой из них менее 15 чнм. Предпочтительно, сумма содержаний этих вредных примесей составляет менее 35 чнм. Содержание углерода предпочтительно составляет менее 40 чнм. Другие менее вредные примеси, такие как А, В, Са, М и , предпочтительно содержатся в количестве, составляющем менее 10 чнм,менее 20 чнм. Содержаниеможет составлять до 500 чнм. Фосфор обычно не является вредным. В порошкообразных металлическом ниобии и металлическом тантале, предназначенных для конденсаторов, легирование фосфором используют для уменьшения способности порошков к спеканию. Уменьшение способности к спеканию порошкообразных субоксидов ниобия согласно настоящему изобретению обычно нежелательно. Предпочтительно содержание фосфора составляет менее 10 чнм. При необходимости порошки, в основном не содержащие фосфора, до спекания можно обработать фосфорной кислотой, раствором гидрофосфата аммония или фосфата аммония. Тантал может содержаться в качестве легирующего компонента, заменяющего ниобий, в соответствии с формулой (,). Содержащий азот порошкообразный субоксид ниобия, пригодный для изготовления пористого тела анода,соответствующего настоящему изобретению, можно получить по методике, в которой порошкообразный металлический ниобий является предшественником, где порошкообразный металлический ниобий в качестве предшественника азотируют перед превращением в оксид ниобия, что можно выполнить различными известными методиками превращения порошкообразного металлического ниобия в . Одной известной методикой является методика твердофазного диспропорционирования порошкообразный металлический ниобий смешивают со стехиометрическим количеством оксида ниобия, в котором ниобий находится в более высокой степени окисления, чем в искомом продукте, таким как 25 или 2 и затем смесь нагревают до температуры, достаточной для того, чтобы инициировать диспропорционирование в неокислительной атмосфере(например,в восстановительной атмосфере,содержащей инертный газ, такой как водород или смеси аргон/водород) в течение времени, достаточного для обеспечения равномерного распределения кислорода, например, в течение нескольких часов. Предпочтительно, металл, также как оксид, в качестве предшественника состоит из первичных частиц, обладающих диаметром, равным примерно 1 мкм или менее (для наименьшего сечения, если частицы несферические). Для азотирования порошкообразного металлического ниобия в качестве предшественника(легирования металла азотом) порошкообразный металл смешивают с твердым соединением,содержащим азот, таким как (3)2 или 4,или его обрабатывают водным раствором этих соединений и нагревают в инертной атмосфере или вводят во взаимодействие с газообразным реагентом, содержащим азот, таким как 2 или 3,при температуре, равной от 400 до 750 С. Газообразный реагент вводят в атмосфере инертного газа, такого как аргон, при содержании от 15 до 30. Количество легирующего азота регулируют путем соответствующего подбора длительности и температуры термической обработки. По другой технологии нанокристаллический нитрид ниобия можно в необходимом соотношении смешать с порошкообразным металлическим ниобием и подвергнуть термической обработке при температуре, равной от 400 до 900 С, в атмосфере инертного газа, использующейся для азотирования порошкообразного металла. Порошкообразный металлический ниобий и оксид, находящийся в высокой степени окисления, в качестве предшественников можно смешать до азотирования, что позволяет упростить методику. В этом случае по окончании азотирования атмосферу меняют, и смесь дополнительно нагревают при температуре, при которой происходит твердофазное диспропорционирование. Особо чистый 25,который можно использовать в качестве оксида, являющимся предшественником,согласно настоящему изобретению, можно получить путем осаждения гидроксида ниобия из водного раствора 27,проводимого путем прибавления водного раствора 4, и прокаливания гидроксида ниобия,выделенного из раствора. Металлический ниобий в качестве предшественника предпочтительно получать из особо чистого 25 путем восстановления. Это можно осуществить путем алюминотермического восстановления, т. е. сжигания смеси 25/,вымывания из нее оксида алюминия и очистки металлического ниобия путем нагревания электронным пучком. Полученный таким образом слиток металлического ниобия можно сделать хрупким за счет диффузии водорода, проводимой известным образом, и размолоть с получением порошка, содержащего чешуйчатые частицы. Предпочтительной методикой восстановления пентаоксида до металла является двустадийная методика, описанная в 00/67936. По этой методике пентаоксид сначала восстанавливают примерно до диоксида ниобия, и на второй стадии до металлического ниобия с помощью паров магния при температуре, равной примерно от 900 до 1100 С. Оксид магния, образующийся при восстановлении, можно удалить путем промывки кислотой. Однако не требуется удалять оксид магния до азотирования и превращения металлического ниобия в . Напротив, наличие оксида магния во время превращения в благоприятно влияет на пористость порошкообразного . Размер зерен (размер вторичных частиц) порошка можно регулировать путем надлежащего подбора температуры, при которой проводят твердофазное диспропорционирование, или позднее путем термообработки спекания в атмосфере аргона,предпочтительно содержащей до 10 водорода, и просеивания. Настоящее изобретение подробнее разъясняется с помощью приведенных ниже примеров Предшественники Используют следующие предшественники 1 25 со следующими аналитическими данными А 1 чнм С 0,3 чнм С 10 чнм 14 чнм Плотность по Скотту 12,2 г/дюйм 3. А 2 О 2,получен восстановлением предшественника(25) со следующими аналитическими данными А 2 чнм С 2 чнм С 12 чнм 14 чнм БЭТ 0,17 м 2/г Плотность по Скотту 23,6 г/дюйм 3 3 Металлический ниобий Предшественник А 2(О 2) взаимодействует с парами магния, как описано в 00/67936, с получением поверхности металлического необия со следующими аналитическими данными А 2 чнм С 2 чнм С 10 чнм 7 чнм А 4 Металлический ниобий, полученный промывкой предшественника 3 (металлического ниобия, содержащего оксид магния) серной 5 23631 кислотой и промытый водой до нейтральной реакции. Аналитические данные А 3 чнм С 2 чнм С 10 чнм,то соответствующее количество меньше предела обнаружения и последующее число представляет собой предел обнаружения. Примеры получения порошков Пример 1 (сравнительный) 53,98 мас.Предшественника А 4 и 46,02 мас.предшественника(25) перемешивают до однородного состояния и нагревают в атмосфере водорода при 1400 С. Характеристики продукта приведены в таблице 1. Пример 2 Предшественник А 4 перемешивают до однородного состояния с умноженным на 1,5 стехиометрическим количеством магния(соответствующим содержанию кислорода) и 5,4 мас. частей 4 (на 100 частей ) и помещают в реактор. Затем реактор промывают аргоном и нагревают при 700 С в течение 90 мин. После охлаждения реактор медленно заполняют воздухом для пассивации. После промывки серной кислотой и ополаскивания получают металлический ниобий,легированный азотом, содержащий от 9600 до 10500 чнм азота (в среднем 9871 чнм). Содержание кислорода равно 6724 чнм. Ниобий, легированный азотом, превращают втаким же образом, как в примере 1. Характеристики продукта приведены в таблице 1. Порошковая рентгенограмма приведена на фиг. 1. Можно ясно видеть 2 (101)-пик при 238,5,отмеченный стрелкой. В соответствии с этим, по меньшей мере, часть легирующегоприсутствуют в виде кристаллической фазы 2. Пример 3 Повторяют процедуру примера 2 с тем отличием,что количество прибавляемого 4 увеличивают до 8,2 мас. частей. Порошкообразный ниобий обладает средним содержанием азота, равным 14730 чнм. Содержание кислорода равно 6538 чнм. Характеристики образовавшегося субоксида приведены в таблице 1. Пример 4 53,95 мас. частей предшественника А 4 и 46,05 мас. частей предшественника А 1 (2 О 5) перемешивают до однородного состояния и помещают в реактор. Реактор промывают аргоном и нагревают при 500 С. Затем реактор трижды обрабатывают смесью 80/20 каждый раз в течение 30 мин. Затем порошкообразную смесь нагревают до 1450 С в атмосфере водорода. Характеристики продукта приведены в таблице 1. Порошковая рентгенограмма приведена на фиг. 2. Можно ясно видеть 2 (101)-пик при 2038,5,отмеченный стрелкой. Пример 5 Предшественник 3 (, содержащий ) азотируют газообразным азотом при 630 С и затем оксид магния и оставшийся металлический магний удаляют путем промывки 15 серной кислотой. Содержание кислорода в полученном металлическом ниобии равно 1,6 мас.содержание азота равно 8515 чнм. 56,03 мас. частей легированного металлического ниобия и 43,97 мас. частей предшественника(25) перемешивают до однородного состояния и нагревают до 1100 С в атмосфере водорода. Характеристики продукта приведены в таблице 1. Порошковая рентгенограмма приведена на фиг. 3. Можно ясно видеть 2 (101)-пик при 238,5, отмеченный стрелкой. Таблица 1 Пример 6 Предшественник А 2 (2) помещают в реактор на сито, изготовленное из ниобиевой проволоки. Под ситом находится тигель, содержащий 6 Плотность по Скотту 90 мкм 295,4 290,05 270,76 299,93 268,37 умноженное на 1,05 стехиометрическое количество магния, соответствующее содержанию кислорода в О 2. На дно реактора непрерывно подают аргон и его отбирают из верхней части реактора. Затем 23631 реактор нагревают примерно до 950 С. После израсходования магния реактор охлаждают до 575 С и в течение 3 ч подают азот. После охлаждения, пассивации и удаления оксида магния получают легированный азотом металлический ниобий, который можно использовать для превращения в . Исследование скорости горения По 50 г порошков, полученных в примерах 1(сравнительном), 2 и 3, помещают на лист ниобия толщиной 0,1 мм в виде полоски 150 х 30 мм. Полоски поджигают с одного конца и измеряют время полного сгорания (на воздухе). порошок примера 1(сравнительного) время сгорания 3 мин 35 с,порошок примера 2 время сгорания 6 мин 25 с,порошок примера 3 время сгорания 8 мин 10 с. Исследование ДСК/ТГА Образец примера 1 и примера 2 нагревают на воздухе от 25 до 600 С и с помощью термогравиметрического анализа (ТГА) определяют увеличение массы. Одновременно с помощью ДСК измеряют сопутствующий тепловой поток. На фиг. 4 приведены соответствующие зависимости для порошка примера 1 (сравнительного) и на фиг. 5 приведены соответствующие зависимости для порошка примера 2. На этих чертежах кривая А характеризует температуру (левая внутренняя шкала от 0 до 600 С), кривая В характеризует содержание в мас.(левая наружная шкала от 95 до 125) и кривая С характеризует тепловой поток с поправкой на массу (правая шкала от 0 до 120 Вт/г) в зависимости от времени (горизонтальная шкала от 0 до 50 соответственно 60 с). Для обоих образцов обнаруживается увеличение массы при температуре выше примерно 200 С с небольшим выделением тепла. До примерно 450 С увеличение массы и выделение тепла для обоих образцов очень близки друг к другу. Выше примерно 450 С для не содержащего азот образца наблюдается резкое увеличение массы и соответствующее значительное выделение тепла (фиг. 5), тогда как для содержащего азот образца выделение тепла и скорость увеличения массы остаются умеренными также и выше 450 С при отсутствии экзотермического пика. Изготовление анодов Порошки х примера 1 (сравнительного) и примера 2 помещают в цилиндрические прессформы диаметром 4,1 мм и длиной 4,2 мм вокруг расположенной по оси танталовой проволоки. Порошки прессуют в брикеты, обладающие плотностью, равной 2,8 г/см 3. Брикеты помещают на пластинку из ниобия и нагревают до 1460 С в вакууме, составляющем 10-8 бар, в течение 20 мин. Исследование напряжения пробоя анодов Аноды погружают в 0,1 водный раствор фосфорной кислоты (электропроводность равна 8600 мкСм/см) при температуре, равной 85 С и для формования подают постоянный ток силой 150 мА,пока не происходит резкого падения напряжения(напряжение пробоя). Для анодов, изготовленных из порошка примера 1 (сравнительного), резкое падение напряжения происходит при 96 В, а для анодов, изготовленных из порошка примера 2,резкое падение напряжения происходит при 104 В. Исследование конденсаторов На промышленной производственной линии из порошка примера 1 (сравнительного), а также из порошков примера 2 изготавливают конденсаторы. Порошки прессуют в пресс-формах диаметром 4,2 мм и длиной 4,1 мм вокруг расположенной по оси танталовой проволоки до плотности, равной 2,8 г/см 3. Брикеты спекают в вакууме, составляющем 10-8 бар. Анодные структуры анодируют до формующего напряжения, равного 16 В, и снабжают катодами из МО 2. Аноды эксплуатируют при постоянной температуре при переменном токе с рабочим напряжением, указанным ниже. В каждом из указанных испытаний одновременно используют 50 конденсаторов На фиг 6 а и 6 приведен ток утечки относительно емкости конденсатора,изготовленного из порошка примера 1(сравнительного), при температуре 125 С и рабочем напряжении 4 В в течение 5000 ч эксплуатации. На фиг. 7 а и 7 приведен ток утечки относительно емкости конденсатора,изготовленного из порошка примера 2(легированного ), при температуре 125 С и рабочем напряжении 4 В в течение 9000 ч эксплуатации. На фиг. 8 а и 8 приведен ток утечки относительно емкости конденсатора,изготовленного из порошка примера 1(сравнительного) при температуре 140 С и рабочем напряжении 2 В в течение 5000 ч эксплуатации. На фиг. 9 а и 9 приведен ток утечки относительно емкости конденсатора,изготовленного из порошка примера 2(легированного ), при температуре 140 С и рабочем напряжении 2 В в течение 5000 ч эксплуатации. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Пористое тело анода, предназначенное для применения в твердотельном конденсаторе,получаемое из порошкообразного субоксида ниобия, включающее частицы субоксида ниобия,обладающее объемным содержанием азота, равным от 500 до 20000 чнм, указанный порошок агломерирован и коалесцирован с образованием единого пористого тела анода, отличающееся тем,что пористое тело анода свободно от других окислов. 2. Пористое тело анода по п.1, отличающееся тем, что содержание азота в порошкообразном субоксиде ниобия составляет от 1000 до 8000 чнм,предпочтительно - от 3000 до 5000 чнм. 3. Пористое тело анода по п.1, отличающееся тем, что в нем азот, по меньшей мере, частично содержится в форме кристаллов 2 или кристаллов оксинитрида ниобия. 4. Пористое тело анода по п.3, отличающееся тем, что в нем кристаллы 2 обладают размером,7 23631 достаточным для проявления пика рентгеновского излучения С при угле 2, равном примерно 38,5. 5. Пористое тело анода по п.4, отличающееся тем, что в нем высота пика 2 примерно при 2 38,5 составляет от 2 до 25 от высоты пикапри 2 - 30. 6. Пористое тело анода по любому из п.п. от 1 до 5, отличающееся тем, что в нем пик С 1 примерно при 238,5, обладает полушириной,равной от 0,05 до 0,2. 7. Пористое тело анода по любому из п.п. от 1 до 6, отличающееся тем, что в нем частицы порошкообразного субоксида ниобия являются агломератами первичных частиц, обладающих средним диаметром, равным от 0,1 до 1,5 мкм,предпочтительно - от 0,3 до 1,0 мкм. 8. Пористое тело анода по любому из п.п. от 1 до 7, отличающееся тем, что в нем субоксид ниобия обладает составом х при 0,7 х 1,3. 9. Пористое тело анода по п. 8, отличающееся тем, что в нем 1 х 1,033. 10. Пористое тело анода по любому из п.п. от 1 до 9, отличающееся тем, что в нем содержание кислорода равно от 14,5 до 15,1 мас 11. Пористое тело анода по любому из п.п. от 1 до 10, отличающееся тем, что в нем порошкообразный субоксид ниобия, из которого можно получить тело анода, обладает временем сгорания, равным более 5 мин, когда 50 г порошка помещают на участке размером 150 х 30 мм на лист ниобия толщиной 0,1 мм и поджигают с одного конца. 12. Пористое тело анода по любому из п.п. от 1 до 11, отличающееся тем, что оно сформовано путем прессования и спекания указанного порошка. 13. Твердотельный конденсатор,отличающийся тем, что он включает пористое тело анода по любому из п.п. от 1 до 12. 14. Твердотельный конденсатор по п.13,отличающийся тем, что он включает) диэлектрический слой, сформированный на поверхностях указанного пористого тела анода, и) проводящий катодный слой, сформированный на указанном диэлектрическом слое. 15. Твердотельный конденсатор по п.13 или 14,отличающийся тем, что в нем тело анода и катодный слой электрически соединены с соответствующими выводами анода и катода конденсатора. 16. Твердотельный конденсатор по любому из п.п. от 13 до 15, отличающийся тем, что он заключен в изолирующий материал кроме наружных поверхностей выводов анода и катода. 17. Электрическое или электронное устройство,отличающееся тем,что оно включает твердотельный конденсатор по любому из п.п. от 13 до 16. 18. Электрическое или электронное устройство по п.17, отличающееся тем, что оно выбрано из группы, включающей телефоны, радиоприемники,телевизоры, компьютеры и устройства перезарядки аккумуляторов.

МПК / Метки

МПК: H01G 9/052, B22F 1/00, C22C 32/00, C01G 33/00

Метки: включающий, электронное, конденсатор, устройство, пористое, электрическое, включающее, анода, указанное, указанный, тело, твердотельный

Код ссылки

<a href="http://kzpatents.com/12-23631-poristoe-telo-anoda-tverdotelnyjj-kondensator-vklyuchayushhijj-ukazannoe-telo-i-elektricheskoe-ili-elektronnoe-ustrojjstvo-vklyuchayushhee-ukazannyjj-kondensator.html" rel="bookmark" title="База патентов Казахстана">Пористое тело анода, твердотельный конденсатор, включающий указанное тело, и электрическое или электронное устройство, включающее указанный конденсатор</a>

Похожие патенты